当前位置: 首页 > >

数据结构与算法(Python)学*笔记

发布时间:

一、引入概念
1、学*数据结构与算法的必要性

没有看过数据结构和算法,有时面对问题可能会没有任何思路,不知如何下手去解决;大部分时间可能解决了问题,可是对程序运行的效率和开销没有意识,性能低下;有时会借助别人开发的利器暂时解决了问题,可是遇到性能瓶颈的时候,又不知该如何进行针对性的优化。如果我们常看兵法,便可做到胸有成竹,有时会事半功倍!同样,如果我们常看数据结构与算法,我们写程序时也能游刃有余、明察秋毫,遇到问题时亦能入木三分、迎刃而解。


?


2、算法效率衡量
2.1 “大O记法”

对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐*函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。


?


2.2 时间复杂度

假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐*时间复杂度,简称时间复杂度,记为T(n)。


分析算法时,存在几种可能的考虑:


算法完成工作最少需要多少基本操作,即最优时间复杂度算法完成工作最多需要多少基本操作,即最坏时间复杂度算法完成工作*均需要多少基本操作,即*均时间复杂度

对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值。


对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。


对于*均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于*均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。


因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。


?


2.3 常见时间复杂度
执行次数函数举例非正式术语
12O(1)常数阶
2n+3O(n)线性阶
3n2+2n+1O(n2)*方阶
5log2n+20O(logn)对数阶
2n+3nlog2n+19O(nlogn)nlogn阶
6n3+2n2+3n+4O(n3)立方阶
2nO(2n)指数阶

注意,经常将log2n(以2为底的对数)简写成logn


所消耗的时间从小到大


O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)



?


2.4 list内置操作的时间复杂度


2.5 dict内置操作的时间复杂度


?


3、数据结构

数据是一个抽象的概念,将其进行分类后得到程序设计语言中的基本类型。如:int,float,char等。数据元素之间不是独立的,存在特定的关系,这些关系便是结构。数据结构指数据对象中数据元素之间的关系。


算法与数据结构

程序 = 数据结构 + 算法



我们如何用Python中的类型来保存一个班的学生信息? 如果想要快速的通过学生姓名获取其信息呢?



列表和字典都可以存储一个班的学生信息,但是想要在列表中获取一名同学的信息时,就要遍历这个列表,其时间复杂度为O(n),而使用字典存储时,可将学生姓名作为字典的键,学生信息作为值,进而查询时不需要遍历便可快速获取到学生信息,其时间复杂度为O(1)。我们为了解决问题,需要将数据保存下来,然后根据数据的存储方式来设计算法实现进行处理,那么数据的存储方式不同就会导致需要不同的算法进行处理。我们希望算法解决问题的效率越快越好,于是我们就需要考虑数据究竟如何保存的问题,这就是数据结构。


高效的程序需要在数据结构的基础上设计和选择算法。


总结:算法是为了解决实际问题而设计的,数据结构是算法需要处理的问题载体


?


?


二、顺序表

线性表是最基本的数据结构之一,记录着元素之间的一种顺序关系。


根据线性表的实际存储方式,分为两种实现模型:


顺序表,将元素顺序地存放在一块连续的存储区里,元素间的顺序关系由它们的存储顺序自然表示。链表,将元素存放在通过链接构造起来的一系列存储块中。
1、顺序表的基本形式


图a表示的是顺序表的基本形式,数据元素本身连续存储,每个元素所占的存储单元大小固定相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址Loc (e0)加上逻辑地址(第i个元素)与存储单元大小(c)的乘积计算而得,即:Loc(ei) = Loc(e0) + c*i。故,访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1)。


如果元素的大小不统一,则须采用图b的元素外置的形式,将实际数据元素另行存储,而顺序表中各单元位置保存对应元素的地址信息(即链接)。由于每个链接所需的存储量相同,通过上述公式,可以计算出元素链接的存储位置,而后顺着链接找到实际存储的数据元素。注意,图b中的c不再是数据元素的大小,而是存储一个链接地址所需的存储量,这个量通常很小。图b这样的顺序表也被称为对实际数据的索引,这是最简单的索引结构。


?


2、顺序表的结构与实现
2.1 顺序表的结构


一个顺序表的完整信息包括两部分,一部分是表中的元素集合,另一部分是为实现正确操作而需记录的信息,即有关表的整体情况的信息,这部分信息主要包括元素存储区的容量和当前表中已有的元素个数两项。


2.2 顺序表的两种基本实现方式


图a为一体式结构,存储表信息的单元与元素存储区以连续的方式安排在一块存储区里,两部分数据的整体形成一个完整的顺序表对象。一体式结构整体性强,易于管理。但是由于数据元素存储区域是表对象的一部分,顺序表创建后,元素存储区就固定了


图b为分离式结构,表对象里只保存与整个表有关的信息(即容量和元素个数),实际数据元素存放在另一个独立的元素存储区里,通过链接与基本表对象关联


元素存储区替换

一体式结构由于顺序表信息区与数据区连续存储在一起,所以若想更换数据区,则只能整体搬迁,即整个顺序表对象(指存储顺序表的结构信息的区域)改变了。


分离式结构若想更换数据区,只需将表信息区中的数据区链接地址更新即可,而该顺序表对象不变。


元素存储区扩充

采用分离式结构的顺序表,若将数据区更换为存储空间更大的区域,则可以在不改变表对象的前提下对其数据存储区进行了扩充,所有使用这个表的地方都不必修改。只要程序的运行环境(计算机系统)还有空闲存储,这种表结构就不会因为满了而导致操作无法进行。人们把采用这种技术实现的顺序表称为动态顺序表,因为其容量可以在使用中动态变化。


扩充的两种策略


每次扩充增加固定数目的存储位置,如每次扩充增加10个元素位置,这种策略可称为线性增长。

特点:节省空间,但是扩充操作频繁,操作次数多。

每次扩充容量加倍,如每次扩充增加一倍存储空间。

特点:减少了扩充操作的执行次数,但可能会浪费空间资源。以空间换时间,推荐的方式。


?


3、顺序表的操作
3.1 增加元素

为顺序表增加新元素111的三种方式



a. 尾端加入元素,时间复杂度为O(1)


b. 非保序的加入元素(不常见),时间复杂度为O(1)


c. 保序的元素加入,时间复杂度为O(n)


3.2 删除元素


a. 删除表尾元素,时间复杂度为O(1)


b. 非保序的元素删除(不常见),时间复杂度为O(1)


c. 保序的元素删除,时间复杂度为O(n)


4、Python中的顺序表

Python中的list和tuple两种类型采用了顺序表的实现技术,具有前面讨论的顺序表的所有性质。tuple是不可变类型,即不变的顺序表,不支持改变其内部状态的任何操作,而其他方面,则与list的性质类似。


list的基本实现技术

Python标准类型list就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),而且还具有以下行为特征:


基于下标(位置)的高效元素访问和更新,时间复杂度应该是O(1);

为满足该特征,应该采用顺序表技术,表中元素保存在一块连续的存储区中。

允许任意加入元素,而且在不断加入元素的过程中,表对象的标识(函数id得到的值)不变。

为满足该特征,就必须能更换元素存储区,并且为保证更换存储区时list对象的标识id不变,只能采用分离式实现技术。


在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。这就是为什么用list.append(x) (或 list.insert(len(list), x),即尾部插入)比在指定位置插入元素效率高的原因。


在Python的官方实现中,list实现采用了如下的策略:在建立空表(或者很小的表)时,系统分配一块能容纳8个元素的存储区;在执行插入操作(insert或append)时,如果元素存储区满就换一块4倍大的存储区。但如果此时的表已经很大(目前的阀值为50000),则改变策略,采用加一倍的方法。引入这种改变策略的方式,是为了避免出现过多空闲的存储位置。


?



友情链接: